90 research outputs found

    Coupling of quantum angular momenta: an insight into analogic/discrete and local/global models of computation

    Full text link
    In the past few years there has been a tumultuous activity aimed at introducing novel conceptual schemes for quantum computing. The approach proposed in (Marzuoli A and Rasetti M 2002, 2005a) relies on the (re)coupling theory of SU(2) angular momenta and can be viewed as a generalization to arbitrary values of the spin variables of the usual quantum-circuit model based on `qubits' and Boolean gates. Computational states belong to finite-dimensional Hilbert spaces labelled by both discrete and continuous parameters, and unitary gates may depend on quantum numbers ranging over finite sets of values as well as continuous (angular) variables. Such a framework is an ideal playground to discuss discrete (digital) and analogic computational processes, together with their relationships occuring when a consistent semiclassical limit takes place on discrete quantum gates. When working with purely discrete unitary gates, the simulator is naturally modelled as families of quantum finite states--machines which in turn represent discrete versions of topological quantum computation models. We argue that our model embodies a sort of unifying paradigm for computing inspired by Nature and, even more ambitiously, a universal setting in which suitably encoded quantum symbolic manipulations of combinatorial, topological and algebraic problems might find their `natural' computational reference model.Comment: 17 pages, 1 figure; Workshop `Natural processes and models of computation' Bologna (Italy) June 16-18 2005; to appear in Natural Computin

    Projective Ponzano-Regge spin networks and their symmetries

    Full text link
    We present a novel hierarchical construction of projective spin networks of the Ponzano-Regge type from an assembling of five quadrangles up to the combinatorial 4-simplex compatible with a geometrical realization in Euclidean 4-space. The key ingrendients are the projective Desargues configuration and the incidence structure given by its space-dual, on the one hand, and the Biedenharn--Elliott identity for the 6j symbol of SU(2), on the other. The interplay between projective-combinatorial and algebraic features relies on the recoupling theory of angular momenta, an approach to discrete quantum gravity models carried out successfully over the last few decades. The role of Regge symmetry --an intriguing discrete symmetry of the 6j6j which goes beyond the standard tetrahedral symmetry of this symbol-- will be also discussed in brief to highlight its role in providing a natural regularization of projective spin networks that somehow mimics the standard regularization through a q-deformation of SU(2).Comment: 14 pages, 19 figure

    Conformal variations and quantum fluctuations in discrete gravity

    Full text link
    After an overview of variational principles for discrete gravity, and on the basis of the approach to conformal transformations in a simplicial PL setting proposed by Luo and Glickenstein, we present at a heuristic level an improved scheme for addressing the gravitational (Euclidean) path integral and geometrodynamics.Comment: 11 pages, 3 figure

    Hamiltonian dynamics of a quantum of space: hidden symmetries and spectrum of the volume operator, and discrete orthogonal polynomials

    Full text link
    The action of the quantum mechanical volume operator, introduced in connection with a symmetric representation of the three-body problem and recently recognized to play a fundamental role in discretized quantum gravity models, can be given as a second order difference equation which, by a complex phase change, we turn into a discrete Schr\"odinger-like equation. The introduction of discrete potential-like functions reveals the surprising crucial role here of hidden symmetries, first discovered by Regge for the quantum mechanical 6j symbols; insight is provided into the underlying geometric features. The spectrum and wavefunctions of the volume operator are discussed from the viewpoint of the Hamiltonian evolution of an elementary "quantum of space", and a transparent asymptotic picture emerges of the semiclassical and classical regimes. The definition of coordinates adapted to Regge symmetry is exploited for the construction of a novel set of discrete orthogonal polynomials, characterizing the oscillatory components of torsion-like modes.Comment: 13 pages, 5 figure

    Quantum Tetrahedra

    Full text link
    We discuss in details the role of Wigner 6j symbol as the basic building block unifying such different fields as state sum models for quantum geometry, topological quantum field theory, statistical lattice models and quantum computing. The apparent twofold nature of the 6j symbol displayed in quantum field theory and quantum computing -a quantum tetrahedron and a computational gate- is shown to merge together in a unified quantum-computational SU(2)-state sum framework

    Quantum automata, braid group and link polynomials

    Full text link
    The spin--network quantum simulator model, which essentially encodes the (quantum deformed) SU(2) Racah--Wigner tensor algebra, is particularly suitable to address problems arising in low dimensional topology and group theory. In this combinatorial framework we implement families of finite--states and discrete--time quantum automata capable of accepting the language generated by the braid group, and whose transition amplitudes are colored Jones polynomials. The automaton calculation of the polynomial of (the plat closure of) a link L on 2N strands at any fixed root of unity is shown to be bounded from above by a linear function of the number of crossings of the link, on the one hand, and polynomially bounded in terms of the braid index 2N, on the other. The growth rate of the time complexity function in terms of the integer k appearing in the root of unity q can be estimated to be (polynomially) bounded by resorting to the field theoretical background given by the Chern-Simons theory.Comment: Latex, 36 pages, 11 figure

    Invariants of spin networks with boundary in Quantum Gravity and TQFT's

    Get PDF
    The search for classical or quantum combinatorial invariants of compact n-dimensional manifolds (n=3,4) plays a key role both in topological field theories and in lattice quantum gravity. We present here a generalization of the partition function proposed by Ponzano and Regge to the case of a compact 3-dimensional simplicial pair (M3,∂M3)(M^3, \partial M^3). The resulting state sum Z[(M3,∂M3)]Z[(M^3, \partial M^3)] contains both Racah-Wigner 6j symbols associated with tetrahedra and Wigner 3jm symbols associated with triangular faces lying in ∂M3\partial M^3. The analysis of the algebraic identities associated with the combinatorial transformations involved in the proof of the topological invariance makes it manifest a common structure underlying the 3-dimensional models with empty and non empty boundaries respectively. The techniques developed in the 3-dimensional case can be further extended in order to deal with combinatorial models in n=2,4 and possibly to establish a hierarchy among such models. As an example we derive here a 2-dimensional closed state sum model including suitable sums of products of double 3jm symbols, each one of them being associated with a triangle in the surface.Comment: 9 page
    • …
    corecore